Counting Orbits Under Kreweras Complementation

نویسنده

  • Christine E. Heitsch
چکیده

The Kreweras complementation map is an anti-isomorphism on the lattice of noncrossing partitions. We consider an analogous operation for plane trees motivated by the molecular biology problem of RNA folding. In this context, we explicitly count the orbits of Kreweras’ map according to their length as the number of appropriate symmetry classes of trees in the plane. These new enumeration results are consolidated into a single implicit formula under the cyclic sieving phenomenon.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bijective counting of Kreweras walks and loopless triangulations

X iv :m at h/ 06 05 32 0v 1 [ m at h. C O ] 1 2 M ay 2 00 6 BIJECTIVE COUNTING OF KREWERAS WALKS AND LOOPLESS TRIANGULATIONS OLIVIER BERNARDI Abstra t. We onsider latti e walks in the plane starting at the origin, remaining in the rst quadrant i, j ≥ 0 and made of West, South and North-East steps. In 1965, Germain Kreweras dis overed a remarkably simple formula giving the number of these walks ...

متن کامل

Counting Genus One Partitions and Permutations

We prove the conjecture by M. Yip stating that counting genus one partitions by the number of their elements and blocks yields, up to a shift of indices, the same array of numbers as counting genus one rooted hypermonopoles. Our proof involves representing each genus one permutation by a four-colored noncrossing partition. This representation may be selected in a unique way for permutations con...

متن کامل

How to count genus one partitions

We prove the conjecture by M. Yip stating that counting genus one partitions by the number of their elements and parts yields, up to a shift of indices, the same array of numbers as counting genus one rooted hypermonopoles. Our proof involves representing each genus one permutation by a four-colored noncrossing partition. This representation may be selected in a unique way for permutations cont...

متن کامل

Edge local complementation and equivalence of binary linear codes

Orbits of graphs under the operation edge local complementation (ELC) are defined. We show that the ELC orbit of a bipartite graph corresponds to the equivalence class of a binary linear code. The information sets and the minimum distance of a code can be derived from the corresponding ELC orbit. By extending earlier results on local complementation (LC) orbits, we classify the ELC orbits of al...

متن کامل

Some Variants of the Exponential Formula, with Application to the Multivariate Tutte Polynomial (alias Potts Model)

We prove some variants of the exponential formula and apply them to the multivariate Tutte polynomials (also known as Potts-model partition functions) of graphs. We also prove some further identities for the multivariate Tutte polynomial, which generalize an identity for counting connected graphs found by Riordan, Nijenhuis, Wilf and Kreweras and in more general form by Leroux and Gessel, and a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009